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hEOT8IViSI-~3CCMaTp~BaeTCFI 33~3% 0 ABJ'XKpaTHOM IIpOCTpaHCTBeHHOM IIepeKpkTHOM 

TOKe (P&W. 1). npOqeCC TeIIJIOO6MeHa OIIHCbIBaeTCR J’pEtBHeHIleM (1) $1 l-paHWIHbIMll 

J’CJIOBliHMK (4). PeLUeHMe BbIt’IOJIHC!HO MeTOHOM HHTWpaJIbHbIX IIpeO6p330BaHkifi, II pe3yJIb- 

T3TE.l npeRCT3BneHbI B BEIAe o6uenpnHmoil 33BHCAMOCTM 4 = I(P, R) (hc.'L). 

NOMENCLATURE 

t:, dimensionless temperature of 
’ a heat agent passing twice in 
the first passage; _ 
variable temperature of this 
heat agent in the first passage; 
variable temperature of this 
heat agent in the second pas- 
sage ; 
variable temperature of the 
other heat agent; 
dimensionless co-ordinate 
along X-axis ; 

P = 1 - e;; ; 
R = W,lW,; 
4, correction coefficient for average tem- 

perature difference at counter flow. 

dimensionless co-ordinate 
along Y-axis ; 
heat transfer surfaces counted 
off along X- and Y-axes 
respectively ; 
heat transfer coefficient; 
water equivalents of heat 
agents passing twice and once 
in the apparatus; 
see formula (7); 
operator ; 
total heat-transfer surface; 
values of dimensionless co- 
ordinates at F, = F, = F; 
root of characteristic equation 
(11); 
average temperature difference 
in the apparatus ; 

Subscripts 
in, value of quantity at the entrance into 

the apparatus; 
av, average value of quantity at the exit 

from the apparatus. 

IN A recuperative heat exchanger, heat transfer 
between three heat agents is described by a 
uniform differential equation of the third order 
when the internal heat source is absent. Here, a 
particular case of cross motion of the three heat 
agents at an angle of 90”, shown schematically 
in Fig. 1, will be considered. Essentially, as is 
seen from Fig. 1, only two heat agents take part 
in heat transfer, but one of them, having left the 
apparatus, enters it again in the opposite direc- 
tion, assuming that it does not mix in the 
portion AB. 

Thus, this heat agent may be considered as 
two, namely, a heat agent moving in chamber III, 
and a heat agent in chamber II. As for heat 
agent I, it moves normal to the surface plotted 
in Fig. 1. Separate jets are conventionally 
marked by points. To the best of the author’s 
knowledge this problem of cross flow is not 
dealt with in the literature. 

dimensionless temperature of In addition to the above-mentioned con- 
a heat agent passing twice in siderations, we proceed from the following 
the second passage; simplifying restrictions and assumptions: 
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(1) 

(2) 

(3) 

(4) 

(5) 

Heat-transfer surfaces separating liquids 
are flat and equal between themselves. 
Heat-transfer coefficients and water equiv- 
alents are correspondingly averaged in 
both passages and, consequently, constant 
at any point on a heat-transfer surface and 
at any section of the apparatus. 
Liquids moving in the apparatus are not 
mixed normal to motion. 
Heat conduction of a liquid is so small 
that heat transfer in the direction of its 
motion may be neglected. 
The heat-transfer process is stationary. 

<+If) ,;1,:;, 

r;’ 0 

FIG. I. Scheme of twofold space cross flow. 

From these assumptions and conditions, the 
differential equation describing a process con- 
forming to liquid III may be written as follows: 

where 

F, and F, are heat-transfer surfaces counted 
off along the X- and Y-axes, respectively; and 
W, and W, are water equivalents of heat agents 
III and I; the remaining symbols are clear from 
Fig. 1. 

If solution (1) is known, dimensionless 
temperature of a heat agent occurring in the 
second passage (lower chamber) may be deter- 
mined from the relation 

t I, 
- cl 

7 
= e” = e”f 

- tin 

+ av, + 2 av, + 2s;;. (3) 

Solution (1) must satisfy the following boundary 
conditions : 

azf_ylf 

I ae”f 

au,av, ci, = rI -t22?u, “,=” I 1 (4) 

I 
ael” 

+-- 
av, Liz=“= 1 i 

0 

where U is the value of U, at Fz = F, and F is 
the heat-transfer surface in one of the passages 
of the apparatus, equal to half of a total surface. 

Using the Laplace-Carson transformation of 
equation (1) and conditions (4) with respect to 
V,, we get: 

d2(j”’ 

.__ - 

dU; 
AZ&” = 0 (5) 

P”lUr=, = 1; 

+ X2&” 1 ul: = u = 0, (6) 
LJz = u 

where 

p being the operator. 
The solution of equation (5) satisfying condi- 

tions (6) is 

8,,, _ cash h(U - U,) + h sinh h(U - U,) 
-_-. (8) 

cash AU + X sinh AU 

In the region of images, equation (3) will be 
as follows : 

and that with regard to (8) gives: 

8,, = cash X(U - U,) - h sinh h(U - U,) 
----- . (10) 

cash AU + X sinh AU 

The denominator of (10) has purely imaginary 
roots. Designating AU = iv, we obtain the equa- 
tion for determining the roots: 

cot v = ” 
CT’ (11) 
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Values of the first six roots are given in 
Ref. 1, from where values of the first three 
roots are taken. 

Table 1. Values of the first three roots of equation (11) 

-._ -_ -. 

u Vl ye v3 

02 0 433 3.20 6.31 
o-4 0.593 3.26 6-35 
0.6 0.705 3.32 6.38 
0.8 0 791 3.37 6.41 
1.0 0.860 3.43 644 
1.5 0.988 3.54 6.51 
2.0 1.08 364 6.58 
3.0 1.19 3.81 6.70 
4.0 1.26 3.93 6.81 

--_ 

Turning from images to originals, we get, 
from equation (lo), 

X 

_.$UCOSVj(l-";) +UjSillVj(l- $) 
vi(U2 + uj)[U(U + 1) + $1 sin v3. 

j=l 

At any values of VW the series in equation (12) 
quickly converges, and at U < 4 three terms of 
the series give the exact value of 0” for technical 
calculations. 

If in equation (12) Y, is assumed to be equal 
to zero, then the expansion of the function 
e-eu with respect to the roots of equation (11) 
will be obtained. 

Assuming U, = 0 in equation (12), we deter- 
mine the value of relative outlet temperature of 
the heat agent in the second passage of the 
apparatus. This temperature will be a function 
only of the variable V,, i.e. it will have various 
values along this co-ordinate. 

After averaging 8” in the range from 0 to V, 
at the exit from a heat exchanger, the average 
tem~rature of the heat agent passing twice in 
the apparatus is determined: 

or, substituting 0” for its values from equation 
(11) at U, = 0, 

* 1 - exp 
i 

29 
1 I 0;; = 2; 

c 

Ue + VT v 1 
* uj’[U(U + 1) + $1 

j=l 

(13) 

Calculating 0:: at various U and V, it is possible 
to determine-the average difference of tempera- 
tures in the apparatus from the relation 

In Fig. 2, curves for determining the correc- 
tion coefficient for the average difference of 
temperatures at counter flow, depending on 
P = 1 - 0:: and R = W,f WI, are plotted. 

P 

FIG. 2. Dependence of the correction coefficient for 
the average logarithmic difference of temperatures 
at the counter flow JI upon parameters P and R for 

the scheme considered. 

The value of the correction coefficient is 
determined by the following relation : 

1 1 -RP 
$=20(1 -R)h+----* 1-P (15) 

The average relative temperature of a less- 
heated agent having left an inter-tube space is 

81, = RP. (16) 
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The comparison of curves (Fig. 2) with REFERENCE 

analogous ones for a single cross flow shows 
that, in all cases considered, the type of cross 

1. A. V. LUIKOV, Teoria teploprovodnosti. Gosudarst- 
vennoe Izdatelstvo Tekhnicheskoi Literatury (1952). 

flow is characterized by small values of $J. 

Abstract-The problem of twofold space cross flow (Fig. 1) is considered. The heat-transfer process 
is described by equation (1) and boundary conditions (4). A solution obtained out by the method of 
integral transformations, and results are given in the form of the generally accepted dependence 

J, = /(P, R) in Fig. 2. 

R&um&Cet article Btudie le problkme de 1’6coulement transverse & deux directions. Le processus 
d’tchange thermique est dCcrit par 1’Cquation (1) et les conditions aux limites par 1’Cquation (4). 
Une solution est obtenue par la mCthode des transformations intCgrales et les &ultats sont donds 

(Fig. 2) sous la forme d’une fonction gCnCralement adoptte, $ = l(P, R). 

Zusammenfassung-Es wird das Problem des doppelten Querstroms behandelt. Dabei wird das eine 
Medium nach Durchlauf des Wlrmeiibertragers umgelenkt und nochmals, wiederum im Querstrom 
durch den WIrmeiibertrager geleitet (Fig. 1). Der Vorgang des Wlrmeiibergangs ist durch Gleichung 
(1) und die Randbedingungen (4) beschrieben. Die Lijsung wurde nach der Methode der Integral- 
Transformationen durchgefiihrt und die Ergebnisse in der Form II, = I (P, R) in Fig. 2 wiedergegeben. 


